## Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

Rev 1.11 CRM08 <BS(PHY)> <04/01/2022>

## CONTINUOUS INTERNAL EVALUATION - 1

| Dept: BS(PHY) |                 | Sub: Engineering Physics | S Code:21PHY12 |
|---------------|-----------------|--------------------------|----------------|
| 11/01/2022    | Time: 3-4:30 pm | Max Marks: 40            | Elective: N    |

Note: Answer any 2 full questions, choosing one full question from each part.

| Qì | 1      | Questions                                                                                                                                                                                                                      | Mark<br>s | RBT       | CO's |  |  |  |
|----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|------|--|--|--|
|    | PART A |                                                                                                                                                                                                                                |           |           |      |  |  |  |
| 1  |        | Define SHM and mention two examples. Derive the differential equations of SHM using Hooke's law                                                                                                                                | 8         | L1&<br>L2 | CO1  |  |  |  |
|    | ь      | Define force constant and mention its physical significance. Derive the expression for force constant for springs in series and parallel combinations                                                                          | 8         | L1&<br>L2 | CO1  |  |  |  |
|    | C      | A mass of 0.5kg causes an extension of 0.03m in a spring and the system is set for oscillations. Find i) The force constant for the spring ii) angular frequency and iii) time period of the resulting oscillation.            |           | L3        | CO1  |  |  |  |
|    | OR     |                                                                                                                                                                                                                                |           |           |      |  |  |  |
| 2  | 2 8    | Define forced vibration. Discuss the theory of forced vibrations and hence obtain the expression for amplitude and phase.                                                                                                      |           | L1&<br>L2 | CO1  |  |  |  |
|    |        | Define resonance and give the theory of resonant vibrations. Explain sharpness of resonance and discuss the effect of damping on the same.                                                                                     | 8         | L1&<br>L2 | COI  |  |  |  |
|    |        | A 20g oscillator with natural angular frequency 10 rad/s is vibrating in damping medium. The damping force is proportional to the velocity of the vibrator. Calculate the value of damping required for the oscillations to be |           | L3        | CO1  |  |  |  |

| critically damped.(given damping coefficient is 0.17)                                                                                                                                                                                                                       |          |           |     |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----|--|--|--|--|--|
| PART B                                                                                                                                                                                                                                                                      |          |           |     |  |  |  |  |  |
| 3 a What are damped oscillations? Give the theory of damped oscillations.                                                                                                                                                                                                   | 8        | L1&<br>L2 | CO1 |  |  |  |  |  |
| b What are shock waves and mention its properties (any six). Explain any four applications of shock waves.                                                                                                                                                                  | 8        | L1&<br>L2 | CO1 |  |  |  |  |  |
| c A vibrating system of natural frequency 500Hz is force to vibrate with a periodic force per unit mass amplitude 100x10 <sup>-5</sup> N/kg in the pressure of damping/unit mass of 0.01x10 <sup>-3</sup> rad/s. Calculate the maximum amplitude of vibration of the system | of<br>a  | L3        | CO1 |  |  |  |  |  |
| OR                                                                                                                                                                                                                                                                          |          |           |     |  |  |  |  |  |
| 4 a With a neat diagram explain the construction and working of Reddy shock tube. Mention any four characteristics of it.                                                                                                                                                   | 8        | L2        | CO1 |  |  |  |  |  |
| b Explain Mach number, ultrasonic wave, sub sonic wave and supersonic wave.                                                                                                                                                                                                 | e 8      | L2        | CO1 |  |  |  |  |  |
| c The distance between the two pressure sensors in shock tube is 150mm. The time taken by a shock way to travel this distance is 0.3ms. If the velocity of sour under the same condition is 340m/s. Find the Macnumber of the shock wave.                                   | ve<br>nd | L3        | CO1 |  |  |  |  |  |

Prepared by: Prof. Thejaswini L P

HOD: Prof. Ramananda Kamath